We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Factorization algebras in quantum, conformal, and topological Field Theory

Formal Metadata

Title
Factorization algebras in quantum, conformal, and topological Field Theory
Alternative Title
Factorization homology and applications
Title of Series
Number of Parts
16
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Factorization algebras, and factorization homology, began in the work of Beilinson-Drinfeld, as an algebro-geometric/coordinate-free approach to vertex algebras and conformal blocks, respectively. They were re-interpreted by Costello-Gwilliam as a framework for algebras of observables in quantum field theory. A special class, the so-called "locally constant" factorization algebras received special attention from Lurie, Ayala-Francis, and Scheimbauer in the context of fully extended topological field theories. In the first lecture I shall recall this history, define factorization homology in the mold of Ayala-Francis, and recall the key property of excision, which both uniquely determines factorization homology as a functor, and gives an effective mechanism for its computation. In the second lecture, I will turn to examples in geometry and representation theory, following Ben-Zvi-Francis-Nadler, and our works with Ben-Zvi-Brochier and Brochier-Snyder. Specializing the "coefficients" to lie in presentable k-linear categories (the natural home of algebraic geometry and representation theory), one recovers character varieties, and their canonical quantizations, as a computation in factorization homology.