We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Isotonic Regression in General Dimensions

Formal Metadata

Title
Isotonic Regression in General Dimensions
Title of Series
Number of Parts
13
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2018
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
We study the least squares regression function estimator over the class of real-valued functions on [0,1]d that are increasing in each coordinate. For uniformly bounded signals and with a fixed, cubic lattice design, we establish that the estimator achieves the minimax rate of order nmin{2/(d+2),1/d} in the empirical L2-loss, up to poly-logarithmic factors. Further, we prove a sharp oracle inequality, which reveals in particular that when the true regression function is piecewise constant on k hyperrectangles, the least squares estimator enjoys a faster, adaptive rate of convergence of (k/n)min(1,2/d), again up to poly-logarithmic factors. Previous results are confined to the case d=2. Finally, we establish corresponding bounds (which are new even in the case d=2) in the more challenging random design setting. There are two surprising features of these results: first, they demonstrate that it is possible for a global empirical risk minimisation procedure to be rate optimal up to poly-logarithmic factors even when the corresponding entropy integral for the function class diverges rapidly; second, they indicate that the adaptation rate for shape-constrained estimators can be strictly worse than the parametric rate.