We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Computational Approaches in Improving Spermine-based RNA Nanocarriers

Formal Metadata

Title
Computational Approaches in Improving Spermine-based RNA Nanocarriers
Title of Series
Number of Parts
37
Author
License
CC Attribution - NonCommercial 4.0 International:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language
Producer
Production Year2025
Production PlaceFrankfurt am Main

Content Metadata

Subject Area
Genre
Abstract
Delivery is the major hurdle thwarting the therapeutic potential of RNA medicines. While all siRNA drugs on the market target the liver, the lung offers a variety of currently undruggable targets which could be treated with RNA therapeutics. Hence, my lab rationally designs inhalable and biocompatible nanocarriers for efficient siRNA delivery to the lung. Poly(beta-amino ester)s are biodegradable polymers capable of promoting nucleic acid delivery and can be tailormade to investigate structure–function relationships. We combine Design-of-Experiments (DoE) with Molecular Dynamics Simulations and Machine Learning (ML) to accelerate the discovery and optimization process of these siRNA nanocarriers. Our previous results show the feasibility of synthesizing oleylamine-modified spermine-based poly(β-amino ester)s (PBAEs) that efficiently encapsulate siRNA into nanoparticles and the low polymer excess avoids problems of toxicity and polymer-induced side effects. The PBAE-based polyspermines successfully delivered siRNA for gene silencing in 2D cultures and Transwell® air-liquid-interface cultures. Additionally, Boc-protected PBAE-based polyspermines mediated therapeutic gene silencing of mutated KRAS resulting in impaired cell migration. In an effort to compare polymer backbones, polyacrylamide (PAA)-based polyspermines were synthesized and resulted in more efficient siRNA delivery and gene silencing in Transwell® air-liquid-interface cultures compared with Lipofectamine but had a much more favorable safety profile in vitro and in vivo. After intratracheal administration to mice, the PAA-based polyplexes were efficiently taken up by Type II pneumocytes and successfully evaded recognition by macrophages in the lung.
Keywords