We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Using NLP to Detect Knots in Protein Structures

Formal Metadata

Title
Using NLP to Detect Knots in Protein Structures
Title of Series
Number of Parts
141
Author
Contributors
License
CC Attribution - NonCommercial - ShareAlike 4.0 International:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Proteins are essential components of our bodies, with their function often dependent on their 3D structure. However, uncovering the 3D structure has for a long time been redeemed by months of hard work in the lab. Recent advances in Machine learning and Natural language processing have made it possible to build models (eg. AlphaFold) capable of predicting the protein's 3D structure with the same precision as experimental methods. In this talk, I will explore an even more specific application of language models for proteins - the detection of a knot in a protein's 3D structure solely from the protein amino acid sequence. Knotting in proteins is a phenomenon that can affect their function and stability. Thanks to NLP and interpretation techniques we can try to uncover why and how proteins tie themself into a knot. In this research, we rely on many Python-based tools starting from Biopython to Pymol and Hugging Face transformer library.