We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Private Data Anonymization with Python, Fundamentals

Formal Metadata

Title
Private Data Anonymization with Python, Fundamentals
Title of Series
Number of Parts
141
Author
Contributors
License
CC Attribution - NonCommercial - ShareAlike 4.0 International:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor and the work or content is shared also in adapted form only under the conditions of this
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
How to bring large legal document repositories into the public domain without releasing private data? The fundamental concepts behind document anonymization are entity recognition, masking type, and pseudoanonymization. Using python language and a collection of libraries such as spacy, pytorch, and others we can achieve good scores of anonymization. How is this applied within a flow containing AI models for NER? Once anonymized how to improve the result by doing more text mining with python based apps and human in the loop. Although it was approved in 2016, the application of the GDPR at the European level remains a challenge in banking, legal, and other contexts. This talk covers the process of transforming pdf and docx documents into xml, processing them using regexp and spacy/torch models, and how to parse these results using AntConc and Textacy. All the ideas will be supported with the real experience of the MAPA project a European project for anonymization finished in 2022.