We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

An introduction to veering triangulations

Formal Metadata

Title
An introduction to veering triangulations
Title of Series
Number of Parts
50
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Singular euclidean structures on surfaces are a key tool in the study of the mapping class group, of Teichmüller space, and of kleinian three-manifolds. François Guéritaud, while studying work of Ian Agol, gave a powerful technique for turning a singular euclidean structure (on a surface) into a triangulation (of a three-manifold). We will give an exposition of some of this work from the point of view of Delaunay triangulations for the L ∞ -metric. We will review the definitions in a relaxed fashion, discuss the technique, and then present applications to the study of strata in the space of singular euclidean structures. If time permits, we will also discuss the naturally occurring algorithmic questions.