We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Equivariant corks and Heegaard Floer homology

Formal Metadata

Title
Equivariant corks and Heegaard Floer homology
Title of Series
Number of Parts
12
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
A cork is a contractible smooth 4-manifold with an involution on its boundary that does not extend to a diffeomorphism of the entire manifold. Corks can be used to detect exotic structures; in fact, any two smooth structures on a closed simply-connected 4-manifold are related by a cork twist. Recently, Auckly-Kim-Melvin-Ruberman showed that for any finite subgroup G of SO(4) there exists a contractible 4-manifold with an effective G-action on its boundary so that the twists associated to the non-trivial elements of G do not extend to diffeomorphisms of the entire manifold. In this talk, we will use Heegaard Floer techniques originating in work of Akbulut-Karakurt to give a different proof of this phenomenon.