We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

What makes primary decomposition minimal?

Formal Metadata

Title
What makes primary decomposition minimal?
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The usual definition of minimal primary decomposition in commutative algebra grants a little too much leeway. Making minimality work for real multiparameter persistence modules -- that is, multigraded modules over rings of polynomials with real exponents -- requires tighter control over what algebraists call socles and computational topologists call deaths. Functorial definitions yield finiteness statements for primary decompositions of reasonable persistence modules. In contrast, for irreducible decompositions finiteness is impossible with continuous parameters; but nonetheless minimality can be characterized by density with respect to certain topologies arising in the context of partially ordered vector spaces.