We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Mathematical modeling of flagellated micro-swimmers in a viscous fluid

Formal Metadata

Title
Mathematical modeling of flagellated micro-swimmers in a viscous fluid
Alternative Title
Self-propelled bacterial swimmers by helical flagella
Title of Series
Number of Parts
19
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Swimming bacteria with helical flagella are self-propelled micro-swimmers in nature, and the swimming strategies of such bacteria vary depending on the number and the position of flagella on the cell body. In this talk, we will introduce two microorganisms, multi-flagellated E. coli and single-flagellated Vibrio A. The Kirchhoff rod theory is used to model the elastic helical flagellum and the penalty method is employed to describe the dynamics of the rigid cell body. The hydrodynamic interaction between the fluid and the cell is represented by the regularized Stokes formulation. The focus of the talk will be on how bacteria reorient swimming direction.