We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Tale of two moduli stacks

Formal Metadata

Title
Tale of two moduli stacks
Title of Series
Number of Parts
16
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Tilting theory provides a fascinating link between the representation theory of finite dimensional algebras and algebraic geometry. Traditionally, it is approached from the algebraic geometry side by seeking tilting bundles on projective stacks. However, in studying representation theory, it is much more natural to start with a finite dimensional algebra and ask how one might attempt to construct a projective stack which is derived equivalent to it. In this talk, we look at two moduli stacks which address this question, the moduli of refined representations and tensor stable representations. The key is to incorporate data corresponding to the monoidal structure of the category of coherent sheaves on the derived equivalent stack. This is joint work with Tarig Abdelgadir and Boris Lerner.