We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

How adaptive immunity governs co-evolution in microbes

Formal Metadata

Title
How adaptive immunity governs co-evolution in microbes
Title of Series
Number of Parts
16
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Features of the CRISPR-Cas system, in which bacteria integrate small segments of phage genome (spacers) into their DNA to neutralize future attacks, suggest that its effect is not limited to individual bacteria but may control the fate and structure of whole populations [1]. In our model, we find that early dynamics of large phage clones is largely independent of bacterial dynamics but crucially depends on the burst-size of phage infections. In contrast, the fates of early phage mutants are strongly influenced by the feedback from bacterial population that creates a time-dependent fitness landscape for that phage type. Taken together, we quantify the role of population parameters in maintaining phage and bacterial diversity where CRISPR-cas is in the play. 
[1])