We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Minimality of and Local Obstructions to Associative and Coassociative Submanifolds

Formale Metadaten

Titel
Minimality of and Local Obstructions to Associative and Coassociative Submanifolds
Serientitel
Anzahl der Teile
16
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - keine Bearbeitung 4.0 International:
Sie dürfen das Werk bzw. den Inhalt in unveränderter Form zu jedem legalen und nicht-kommerziellen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Seven-manifolds with a G2-structure possess two distinguished classes of submanifolds: associative 3-folds and coassociative 4-folds. When the G2-structure is torsion-free, such submanifolds are minimal (in fact, calibrated) and exist locally. We are led to ask: For which classes of G2-structures is it the case that associative 3-folds (respectively, coassociative 4-folds) are always minimal submanifolds? We will answer this by deriving a simple formula for the mean curvature, in the process uncovering new obstructions to the local existence of coassociatives. Time permitting, we will discuss the analogous results for special Lagrangian 3-folds (respectively Cayley 4-folds) in 6-manifolds with SU(3)-structures (respectively 8-manifolds with Spin(7)-structures). This is joint work with Gavin Ball.