We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The Gross-Pitaevskii Equation and Quantum Vortices

Formal Metadata

Title
The Gross-Pitaevskii Equation and Quantum Vortices
Alternative Title
General introduction: "The Gross-Pitaevskii equation and quantum vortices"
Title of Series
Number of Parts
22
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2019
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
The Gross-Pitaevskii (GP) equation is named after Eugene P. Gross and Lev P. Pitaevskii who introduced it independently in 1961 for the purpose of describing vortices in superfluids. At that time the only known superfluid was liquid helium, but since the first experimental realization of Bose-Einstein condensates in trapped gases of alkali atoms in 1995 the GP equation has become a basic tool for theoretical investigations of the manifold quantum phenomena exhibited by dilute, ultracold Bose gases. Mathematically, the GP equation is a special case of a non-linear Schrödinger equation and the mathematics and physics literature about it is vast. In the talk the focus will be on the following topics: 1) The interpretation of the equation on the basis of many-body quantum mechanics. 2) Vortices in rapidly rotating trapped superfluids at strong coupling and the determination of critical speeds that mark phase transitions from single vortices to a vortex lattice pattern and finally to a giant vortex.