We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Spontaneous symmetry breaking from anyon condensation

Formal Metadata

Title
Spontaneous symmetry breaking from anyon condensation
Title of Series
Number of Parts
14
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In the context of quantum spin liquids, it is long known that the condensation of fractionalized excitations can inevitably break certain physical symmetries. For example, condensing spinons will usually break spin rotation and time reversal symmetries. We generalize these phenomena to the context of a generic continuous quantum phase transition between symmetry enriched topological orders, driven by anyon condensation. We provide two rules to determine whether a symmetry is enforced to break across an anyon condensation transition or not. Using a dimensional reduction scheme, we establish a mapping between these symmetry-breaking anyon-condensation transitions in two spatial dimensions, and deconfined quantum criticality in one spatial dimension.