We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Shintani generating class and the p-adic polylogarithm for totally real fields

Formal Metadata

Title
Shintani generating class and the p-adic polylogarithm for totally real fields
Title of Series
Number of Parts
26
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this talk, we will give a new interpretation of Shintani's work concerning the generating function of nonpositive values of Hecke L-functions for totally real fields. In particular, we will construct a canonical class, which we call the Shintani generating class, in the cohomology of a certain quotient stack of an infinite direct sum of algebraic tori associated with a fixed totally real field. Using our observation that cohomology classes, not functions, play an important role in the higher dimensional case, we proceed to newly define the p-adic polylogarithm function in this case, and investigate its relation to the special value of p-adic Hecke L-functions. Some observations concerning the quotient stack will also be discussed. This is a joint work with Kei Hagihara, Kazuki Yamada, and Shuji Yamamoto.