We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data

Formal Metadata

Title
Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data
Title of Series
Number of Parts
39
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We consider the isentropic Euler equations of gas dynamics in the whole two-dimensional space and we prove the existence of a $C^\infty$ initial datum which admits infinitely many bounded admissible weak solutions. Taking advantage of the relation between smooth solutions to the Euler system and to the Burgers equation we construct a smooth compression wave which collapses into a perturbed Riemann state at some time instant $T > 0$. In order to continue the solution after the formation of the discontinuity, we adjust and apply the theory developed by De Lellis and Székelyhidi and we construct infinitely many solutions.
Keywords