We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Multiscale Models for Image Classification and Physics with Deep Networks

Formal Metadata

Title
Multiscale Models for Image Classification and Physics with Deep Networks
Title of Series
Number of Parts
5
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Approximating high-dimensional functionals with low-dimensional models is a central issue of machine learning, image processing, physics and mathematics. Deep convolutional networks are able to approximate such functionals over a wide range of applications. This talk shows that these computational architectures take advantage of scale separation, symmetries and sparse representations. We introduce simplified architectures which can be anlalyzed mathematically. Scale separations is performed with wavelets and scale interactions are captured through phase coherence. We show applications to image classification and generation as well as regression of quantum molecular energies and modelization of turbulence flows.