We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

BFN Springer theory

Formal Metadata

Title
BFN Springer theory
Title of Series
Number of Parts
19
Author
Contributors
License
CC Attribution - NonCommercial - NoDerivatives 2.0 Generic:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Given a representation of a reductive group, Braverman-Finkelberg-Nakajima have defined a remarkable Poisson variety called the Coulomb branch. Their construction of this space was motivated by considerations from supersymmetric gauge theories and symplectic duality. The coordinate ring of this Coulomb branch is defined as a kind of cohomological Hallalgebra; thus it makes sense to develop a type of “Springer theory” to define modules over this algebra. In this talk, we will explain this BFN Springer theory and give many examples. In the toric case, we will see a beautiful combinatorics of polytopes. In the quiver case, we will see connections to the representations of quivers over power series rings. In the general case, we will explore the relations between this Springer theory and quasi map spaces.