We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Quantum Mechanics of Ribbon graphs: a lattice interpretation of the Kronecker coefficient

Formal Metadata

Title
Quantum Mechanics of Ribbon graphs: a lattice interpretation of the Kronecker coefficient
Alternative Title
Quantum Mechanics of Bipartite Ribbon Graphs: A Combinatorial Interpretation of the Kronecker Coefficient.
Title of Series
Number of Parts
15
Author
Contributors
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The action of subgroups on a product of symmetric groups allows one to enumerate different families of graphs. In particular, bipartite ribbon graphs (with at most edges) enumerate as the orbits of the adjoint action on two copies of the symmetric group (of order n!). These graphs form a basis of an algebra, which is also a Hilbert space for a certain sesquilinear form. Acting on this Hilbert space, we define operators which are Hermitians. We are therefore in the presence of a quantum mechanical model. We show that the multiplicities of the eigenvalues of these operators are precisely the Kronecker coefficients, well known in representation theory. We then prove that there exists an algorithm that delivers the Kronecker coefficients and allow us to interpret those as the dimension of a sub-lattice of the lattice of the ribbon graphs.Thus, this provides an answer to Murnaghan’s question (Amer. J. Math, 1938) on the combinatorial interpretation of the Kronecker coefficient.