We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Exploring Online Depression Forums via Text Mining

Formal Metadata

Title
Exploring Online Depression Forums via Text Mining
Subtitle
A Comparison of Reddit and a Curated Online Forum
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We present a study employing various techniques of text mining to explore and compare two different online forums focusing on depression: (1) the subreddit r/depression (over 60 million tokens), a large, open social media platform and (2) Beyond Blue (almost 5 million tokens), a professionally curated and moderated depression forum from Australia. We are interested in how the language and the content on these platforms differ from each other. We scrape both forums for a specific period. Next to general methods of computational text analysis, we focus on sentiment analysis, topic modeling and the distribution of word categories to analyze these forums. Our results indicate that Beyond Blue is generally more positive and that the users are more supportive to each other. Topic modeling shows that Beyond Blue’s users talk more about adult topics like finance and work while topics shaped by school or college terms are more prevalent on r/depression. Based on our findings we hypothesize that the professional curation and moderation of a depression forum is beneficial for the discussion in it. This talk was given at the online conference COLING2020 during the 5th Social Media Mining for Health Research and Applications Workshop (#SMM4H).
Keywords