Chemical imaging of biological tissues
This is a modal window.
Das Video konnte nicht geladen werden, da entweder ein Server- oder Netzwerkfehler auftrat oder das Format nicht unterstützt wird.
Formale Metadaten
Titel |
| |
Serientitel | ||
Anzahl der Teile | ||
Autor | ||
Lizenz | CC-Namensnennung - keine Bearbeitung 4.0 International: Sie dürfen das Werk in unveränderter Form zu jedem legalen Zweck nutzen, vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. | |
Identifikatoren | 10.5446/50337 (DOI) | |
Herausgeber | 05jdrrw50 (ROR) | |
Erscheinungsjahr | ||
Sprache |
Inhaltliche Metadaten
Fachgebiet | ||
Genre | ||
Abstract |
| |
Schlagwörter |
00:00
WerkzeugstahlChemieanlageMedikalisierungReplikationsursprungGesundheitsstörungBiochemikerinBukett <Wein>SpektroskopieBesprechung/Interview
00:27
SpektroskopieChemieanlageFluoreszenzfarbstoffBleiglanzBesprechung/Interview
00:39
Münster <Käse>Chemisches ElementRöntgenfluoreszenzspektroskopieBesprechung/Interview
00:47
Biologisches MaterialChemisches Experiment
00:57
Biologisches MaterialWerkstoffkundeInterkristalline KorrosionSetzen <Verfahrenstechnik>Chemisches Experiment
01:02
Chemisches Experiment
01:06
Optische AnalyseComputeranimation
01:10
Setzen <Verfahrenstechnik>WerkstoffkundeChemisches Experiment
01:14
Klinischer TodInterkristalline KorrosionAzokupplungEisflächeComputeranimation
01:25
Münster <Käse>Interkristalline KorrosionICP-MassenspektrometrieLaserablationZirkulationBiologisches MaterialHelium IIWeibliche ToteChemisches Experiment
01:44
Helium IIBiologisches MaterialEukaryontische ZelleDurchflussDiagramm
01:55
AerosolNanopartikelBesprechung/Interview
01:59
Computeranimation
02:05
ZuchtzielBesprechung/Interview
02:17
MähdrescherLaserablationBrandsilberNanopartikelAbschreckenElektronentransferMolekül
02:28
Münster <Käse>QuellgebietMolekülLaserablation
02:45
ElektronentransferMolekülQuellgebietMetallICP-MassenspektrometrieZutatChemisches Experiment
02:53
Besprechung/Interview
03:01
EmissionsspektrumTabletteElektronische ZigaretteZutatRingbrennkammerOberflächenchemieHaarwaschmittelBesprechung/Interview
03:27
Münster <Käse>Chemisches ElementMonomolekulare ReaktionBiologisches MaterialWeibliche ToteComputeranimationBesprechung/Interview
03:37
MähdrescherBiologisches MaterialChemischer ProzessChemisches ElementMolekül
03:55
Chemischer ProzessChemisches ElementBiologisches MaterialMolekülBesprechung/Interview
Transkript: English(automatisch erzeugt)
00:10
An image says more than a thousand words. You all are familiar with the statement and it holds true for many different applications in life. In biomedical diagnostics, for example, magnetic resonance imaging is one of the major
00:22
tools to study different diseases and to study different states of the human body. Our approach is to use mass spectrometric and spectroscopic imaging to study tissue slices of animal, human or plant origin. We would like to show you some examples for that in the following. Micro-XAF is a technique for two-dimensional elemental imaging using X-ray fluorescence for the determination of the analytes.
00:48
One of the unique features of this method is a special polycapillary lens. It is able to focus the X-rays down to 25 micrometers. The instrument is able to analyze samples with a size of 20 by 15 centimeters and the spot size of 25 micrometers allows highly resolved images.
01:07
The stage has a very high travel speed and is able to make very fast scans of various types of materials but is also able to move very slowly for sensitive determination. In this image, we see a cryo-section of a rat's lung which was investigated by means of micro-XAF.
01:25
The biggest advantage is that it is non-destructive. It can be used as a pre-screening method for more sensitive investigations like laser ablation coupled to an ICP-MS. A more sensitive method to determine the elemental distribution is the laser ablation ICP-MS.
01:45
For this method, the sample is placed into an ablation cell which is flushed out with helium gas flow. For imaging purposes, we ablate the sample line by line with a focused laser beam. The resulting aerosol is transported into the ICP where the particles are evaporated, atomized and ionized.
02:03
This enables us to transform the results into a three-dimensional image with the signal intensities in the third dimension. This method also provides the possibility of quantification, for example by matrix-matched standards. In this example, we showed the distribution of silver nanoparticles in
02:21
red intestine after oral application with a spatial resolution of 5 micrometers. In contrast to micro-XAF and laser ablation ICP-MS, the combination of laser ablation with APCI-MS enables the detection of small molecules or analyte-specific fragments.
02:42
Here, the ablated material coming from the laser ablation source is transported via a transfer line into the API source where the molecules are ionized by corona discharge. The benefit of this method is the direct analysis of small molecules which are not accessible for ICP-MS due to lack of metal tacking.
03:01
One example is the analysis of tablets and the imaging of its active pharmaceutical ingredients. Here, the whole tablet is placed into the ablation chamber and the surface is ablated line by line. For each pixel, we get the whole mass spectrum and by merging of the pixels with a specific mass-to-charge ratio, we get at the end our image with the distribution of the active pharmaceutical ingredient.
03:28
Each imaging technique offers different opportunities. Depending on the analyte and the analytical question, elemental or molecular methods can be chosen. Other aspects which have to be considered are for example the spatial resolution and the acquisition speed of each technique.
03:45
These parameters are steadily developed and improved. In order to extend the information obtained from one sample, our future perspective is to combine different imaging techniques. In this way, the spatial distribution of both elements and molecules of interest
04:00
can be correlated among each other and with a microscopic picture of the sample. This can help to draw conclusions about biological processes.