We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Trust me, I'm a Data Scientist

Formale Metadaten

Titel
Trust me, I'm a Data Scientist
Untertitel
Ethics for builders of data-based applications
Serientitel
Anzahl der Teile
132
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Data Science is gonna save the world, right? Or is it? Machine Learning epic fails are being largely commented. It's easy to convince ourselves that they are due to the inconsiderate misuse of Data Science. But is it really so? Is it possible that innocuous choices lead an honnest team to a disaster? During the course of this talk, we will build together an (imaginary) application: a disruptive AI-based smart virtual assistant, pledging to help high-schoolers with their university choice. We will see how unintended biaises may creep in at every step, even with the best of intentions. We will explore different topics, such as algorithmic fairness, model interpretability and the handling of minority classes. Through this practical example, this talk will present a review of major ethical pitfalls identified in the Machine Learning community along with suggestions on how to avoid them. This talk is intended for beginner to intermediate Data Scientists, and people working with Data Scientists, even without specific technical knowledge.