We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Using Python to Teach Computational Finance

Formale Metadaten

Titel
Using Python to Teach Computational Finance
Untertitel
Understanding Delta-Hedging with the Probo Package
Serientitel
Anzahl der Teile
118
Autor
Lizenz
CC-Namensnennung - keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen und nicht-kommerziellen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen und das Werk bzw. diesen Inhalt auch in veränderter Form nur unter den Bedingungen dieser Lizenz weitergeben
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this demo-driven session, we will introduce the Probo package for teaching Python programming and concepts from computational finance to beginning programmers in the domain of finance. We'll show how Python is the perfect tool for teaching computational thinking to develop deeper quantitative reasoning. Jupyter notebooks, together with Python packages such as NumPy and Pandas, provide the ideal learning environment. We will start by introducing the Probo package for derivative pricing and hedging. We will demo the pricing of European and American options via the famous Black-Scholes option pricing model. Other examples include Monte Carlo simulation and binomial trees. Using Probo, the answers to derivative pricing problems are right at the students' fingertips. Students can operationalize their understanding by going directly from the mathematics of derivative pricing theories to their implementation in clean and simple code. We will end with a demonstration using Probo to teach the concept of dynamic hedging. Dynamic hedging is perhaps emthe/em crucial concept in modern financial derivatives theory. It is also one of the most difficult concepts to grasp. We'll show how developing deeper intuition is possible with computational thinking via Monte Carlo simulation of delta-hedging. By leveraging the power and simplicity of Python and Jupyter notebooks, the Probo package provides the ideal learning platform for students of computational finance.
Schlagwörter