We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Uncertainty Annotated Databases - A Lightweight Approach for Approximating Certain Answers

Formal Metadata

Title
Uncertainty Annotated Databases - A Lightweight Approach for Approximating Certain Answers
Title of Series
Number of Parts
155
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2019
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
Certain answers are a principled method for coping with uncertainty that arises in many practical data management tasks. Unfortunately, this method is expensive and may ex- clude useful (if uncertain) answers. Thus, users frequently resort to less principled approaches to resolve uncertainty. In this paper, we propose Uncertainty Annotated Databases (UA-DBs), which combine an under- and over-approximation of certain answers to achieve the reliability of certain answers, with the performance of a classical database system. Furthermore, in contrast to prior work on certain answers, UA-DBs achieve a higher utility by including some (explicitly marked) answers that are not certain. UA-DBs are based on incomplete K-relations, which we introduce to generalize the classical set-based notion of incomplete databases and certain answers to a much larger class of data models. Using an implementation of our approach, we demonstrate experimentally that it efficiently produces tight approximations of certain answers that are of high utility