We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Fractal: A General-Purpose Graph Pattern Mining System

Formal Metadata

Title
Fractal: A General-Purpose Graph Pattern Mining System
Title of Series
Number of Parts
155
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In this paper we propose Fractal, a high performance and high productivity system for supporting distributed graph pattern mining (GPM) applications. Fractal employs a dynamic (auto-tuned) load-balancing based on a hierarchical and locality-aware work stealing mechanism, allowing the system to adapt to different workload characteristics. Additionally, Fractal enumerates subgraphs by combining a depth-first strategy with a from scratch processing paradigm to avoid storing large amounts of intermediate state and, thus, improves memory efficiency. Regarding programmer productivity, Fractal presents an intuitive, expressive and modular API, allowing for rapid compositional expression of many GPM algorithms. Fractal-based implementations outperform both existing systemic solutions and specialized distributed solutions on many problems - from frequent graph mining to subgraph querying, over a range of datasets.