We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

FishStore: Faster Ingestion with Subset Hashing

Formal Metadata

Title
FishStore: Faster Ingestion with Subset Hashing
Title of Series
Number of Parts
155
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The last decade has witnessed a huge increase in data being ingested into the cloud, in forms such as JSON, CSV, and binary formats. Traditionally, data is either ingested into storage in raw form, indexed ad-hoc using range indices, or cooked into analytics-friendly columnar formats. None of these solutions is able to handle modern requirements on storage: making the data available immediately for ad-hoc and streaming queries while ingesting at extremely high throughputs. This paper builds on recent advances in parsing and indexing techniques to propose FishStore, a concurrent latch-free storage layer for data with flexible schema, based on multi-chain hash indexing of dynamically registered predicated subsets of data. We find predicated subset hashing to be a powerful primitive that supports a broad range of queries on ingested data and admits a high-performance concurrent implementation. Our detailed evaluation on real datasets and queries shows that FishStore can handle a wide range of workloads and can ingest and retrieve data at an order of magnitude lower cost than state-of-the-art alternatives.