We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

RaSQL: Greater Power and Performance for Big Data Analytics with Recursive-aggregate-SQL on Spark

Formal Metadata

Title
RaSQL: Greater Power and Performance for Big Data Analytics with Recursive-aggregate-SQL on Spark
Title of Series
Number of Parts
155
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Thanks to a simple SQL extension, Recursive-aggregate-SQL (RaSQL) can express very powerful queries and declarative algorithms, such as classical graph algorithms and data mining algorithms. A novel compiler implementation allows RaSQL to map declarative queries into one basic fixpoint operator supporting aggregates in recursive queries. A fully optimized implementation of this fixpoint operator leads to superior performance, scalability and portability. Thus, our RaSQL system, which extends Spark SQL with the before-mentioned new constructs and implementation techniques, matches and often surpasses the performance of other systems, including Apache Giraph, GraphX and Myria.