We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Democratizing Data Science through Interactive Curation of ML Pipelines

Formal Metadata

Title
Democratizing Data Science through Interactive Curation of ML Pipelines
Title of Series
Number of Parts
155
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Statistical knowledge and domain expertise are key to extract actionable insights out of data, yet such skills rarely coexist together. In Machine Learning, high-quality results are only attainable via mindful data preprocessing, hyperparameter tuning and model selection. Domain experts are often overwhelmed by such complexity, de-facto inhibiting a wider adoption of ML techniques in other fields. Existing libraries that claim to solve this problem, still require well-trained practitioners. Those frameworks involve heavy data preparation steps and are often too slow for interactive feedback from the user, severely limiting the scope of such systems. In this paper we present Alpine Meadow, a first Interactive Automated Machine Learning tool. What makes our system unique is not only the focus on interactivity, but also the combined systemic and algorithmic design approach; on one hand we leverage ideas from query optimization, on the other we devise novel selection and pruning strategies combining cost-based Multi-Armed Bandits and Bayesian Optimization. We evaluate our system on over 300 datasets and compare against other AutoML tools, including the current NIPS winner, as well as expert solutions. Not only is Alpine Meadow able to significantly outperform the other AutoML systems while - in contrast to the other systems - providing interactive latencies, but also outperforms in 80% of the cases expert solutions over data sets we have never seen before.