We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Counting Database Repairs under Primary Keys Revisited

Formal Metadata

Title
Counting Database Repairs under Primary Keys Revisited
Title of Series
Number of Parts
155
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Consistent query answering (CQA) aims to deliver meaningful answers when queries are evaluated over inconsistent databases. Such answers must be certainly true in all repairs, which are consistent databases whose difference from the inconsistent one is somehow minimal. An interesting task in this context is to count the number of repairs that entail the query. This problem has been already studied for conjunctive queries and primary keys; we know that it is #P-complete in data complexity under polynomial-time Turing reductions (a.k.a. Cook reductions). However, as it has been already observed in the literature of counting complexity, there are problems that are 'hard-to-count-easy-to-decide', which cannot be complete (under reasonable assumptions) for #P under weaker reductions, and, in particular, under standard many-one logspace reductions (a.k.a. parsimonious reductions). For such 'hard-to-count-easy-to-decide' problems, a crucial question is whether we can determine their exact complexity by looking for subclasses of #P to which they belong. Ideally, we would like to show that such a problem is complete for a subclass of #P under many-one logspace reductions. The main goal of this work is to perform such a refined analysis for the problem of counting the number of repairs under primary keys that entail the query.