We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Distributed and Streaming Linear Programming in Low Dimensions

Formal Metadata

Title
Distributed and Streaming Linear Programming in Low Dimensions
Title of Series
Number of Parts
155
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date2019
LanguageEnglish

Content Metadata

Subject Area
Genre
Abstract
We study linear programming and general LP-type problems in several big data (streaming and distributed) models. We mainly focus on low dimensional problems in which the number of constraints is much larger than the number of variables. Low dimensional LP-type problems appear frequently in various machine learning tasks such as robust regression, support vector machines, and core vector machines. As supporting large-scale machine learning queries in database systems has become an important direction for database research, obtaining efficient algorithms for low dimensional LP-type problems on massive datasets is of great value. In this paper we give both upper and lower bounds for LP-type problems in distributed and streaming models. Our bounds are almost tight when the dimensionality of the problem is a fixed constant.