We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

AI VILLAGE - Machine Learning Model Hardening For Fun and Profit

Formal Metadata

Title
AI VILLAGE - Machine Learning Model Hardening For Fun and Profit
Title of Series
Number of Parts
322
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Machine learning has been widely and enthusiastically applied to a variety of problems to great success and is increasingly used to develop systems that handle sensitive data - despite having seen that for out-of-the-box applications, determined adversaries can extract the training data set and other sensitive information. Suggested techniques for improving the privacy and security of these systems include differential privacy, homomorphic encryption, and secure multi-party computation. In this talk, we’ll take a look at the modern machine learning pipeline and identify the threat models that are solved using these techniques. We’ll evaluate the possible costs to accuracy and time complexity and present practical application tips for model hardening. I will also present some red team tools I developed to easily check black box machine learning APIs for vulnerabilities to a variety of mathematical exploits.