We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

CAAD VILLAGE - GeekPwn - The Uprising Geekpwn AI/Robotics Cybersecurity Contest U.S. 2018 - High Frequenzy Targeted Attacks

Formale Metadaten

Titel
CAAD VILLAGE - GeekPwn - The Uprising Geekpwn AI/Robotics Cybersecurity Contest U.S. 2018 - High Frequenzy Targeted Attacks
Alternativer Titel
Adversarial^2 Training
Serientitel
Anzahl der Teile
322
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Targeted attacks of image classifiers are difficult to transfer from one model to another. Only strong adversarial attacks with the knowledge of the classifier can bypass existing defenses. To defend against such attacks, we implement an “adversarial^2 training” method to strengthen the existing defenses. Yao Zhao is an applied scientist at Microsoft AI & Research working on natural language understanding/generation and search ranking. During his Ph.D. at Yale University, he worked in the field of computuer vision and optics. Yuzhe Zhao is a software engineer in Google Research, working on natural language understanding. He recently earned his Ph.D. from Yale University. Previously, he received his undergraduate degree in mathematics and physics from Shanghai Jiao Tong University.