We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes

Formal Metadata

Title
The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes
Title of Series
Number of Parts
23
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
Watershed and global-scale nitrogen (N) budgets indicate that the majority of the N surplus in anthropogenic landscapes does not reach the coastal oceans. While there is general consensus that this 'missing' N either exits the landscape via denitrification or is retained within watersheds as nitrate or organic N, the relative magnitudes of these pools and fluxes are subject to considerable uncertainty. Our study, for the first time, provides direct, large-scale evidence of N accumulation in the root zones of agricultural soils that may account for much of the 'missing N' identified in mass balance studies. We analyzed long-term soil data (1957–2010) from 2069 sites throughout the Mississippi River Basin (MRB) to reveal N accumulation in cropland of 25–70 kg ha−1 yr−1, a total of 3.8 ± 1.8 Mt yr−1 at the watershed scale. We then developed a simple modeling framework to capture N depletion and accumulation dynamics under intensive agriculture. Using the model, we show that the observed accumulation of soil organic N (SON) in the MRB over a 30 year period (142 Tg N) would lead to a biogeochemical lag time of 35 years for 99% of legacy SON, even with complete cessation of fertilizer application. By demonstrating that agricultural soils can act as a net N sink, the present work makes a critical contribution towards the closing of watershed N budgets.