We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Vortex ratchet induced by controlled edge roughness

Formal Metadata

Title
Vortex ratchet induced by controlled edge roughness
Title of Series
Number of Parts
63
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We demonstrate theoretically and experimentally the generation of rectified mean vortex displacement resulting from a controlled difference between the surface barriers at the opposite borders of a superconducting strip. Our investigation focuses on Al superconducting strips where, in one of the two sample borders, a saw tooth-like array of micro-indentations has been imprinted. The origin of the vortex ratchet effect is based on the fact that (i) the onset of vortex motion is mainly governed by the entrance/nucleation of vortices and (ii) the current lines bunching produced by the indentations facilitates the entrance/nucleation of vortices. Only for one current direction the indentations are positioned at the side of vortex entry and the onset of the resistive regime is lowered compared to the opposite current direction. This investigation points to the relevance of ubiquitous border effects typically neglected when interpreting vortex ratchet measurements on samples with arrays of local asymmetric pinning sites.