We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Two-photon spectra of quantum emitters

Formal Metadata

Title
Two-photon spectra of quantum emitters
Title of Series
Number of Parts
63
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We apply our recently developed theory of frequency-filtered and time-resolved N-photon correlations (del Valle et al 2012 Phys. Rev. Lett. 109 183601) to study the two-photon spectra of a variety of systems of increasing complexity: single-mode emitters with two limiting statistics (one harmonic oscillator or a two-level system) and the various combinations that arise from their coupling. We consider both the linear and nonlinear regimes under incoherent excitation. We find that even the simplest systems display a rich dynamics of emission, not accessible by simple single-photon spectroscopy. In the strong coupling regime, two-photon emission processes involving virtual states are revealed. Furthermore, two general results are unravelled by two-photon correlations with narrow linewidth detectors: (i) filtering-induced bunching and (ii) breakdown of the semi-classical theory. We show how to overcome the latter in a fully quantized picture.