We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Scalable time reversal of Raman echo quantum memory and quantum waveform conversion of light pulse

00:00

Formale Metadaten

Titel
Scalable time reversal of Raman echo quantum memory and quantum waveform conversion of light pulse
Serientitel
Anzahl der Teile
63
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We have found a new hidden symmetry of time reversal light–atom interaction in the photon echo quantum memory with Raman atomic transition. The time-reversed quantum memory creates generalized conditions for the ideal compression/decompression of time duration of the input light pulses and its wavelength. Based on a general analytical approach to this scheme, we have studied the optimal conditions for the light field compression/decompression in resonant atomic systems characterized by realistic spectral properties. The demonstrated necessary conditions for the effective quantum conversion of the light waveform and wavelength are also discussed for various possible realizations of the quantum memory scheme. The performed study promises new capabilities for fundamental study of the light–atom interaction and deterministic quantum manipulation of the light field, significant for quantum communication and quantum computing.
Konverter <Kerntechnik>ElementarteilchenphysikGleitlagerVideotechnikNiederspannungsnetzComputeranimation
Konverter <Kerntechnik>Optisches InstrumentPhotonWerkzeugBlackbox <Bordinstrument>LichtfeldLichtComputeranimation
Optisches InstrumentPostkutscheGruppenlaufzeitManipulatorBildqualitätEisenbahnbetriebOptische KohärenzAtomistikProzessleittechnikLichtAngeregter Zustand
PostkutscheMassenresonanzGleichstromEisenkernLuftdruckZykloidenverzahnungMetallschichtLichtElektrisches SignalEmissionsvermögenPostkutscheWellenlängeAtomistikKonverter <Kerntechnik>TheodolitEnergieniveauOptisches InstrumentErderSchalterAktives MediumBlei-209DruckluftanlageNiederfrequenzResonanzenergieReglerAngeregter ZustandAbsorptionComputeranimation
PostkutscheMorsenLeistungssteuerungLichtAmplitudeAtomistikOptische KohärenzFeldstärkeNetztransformatorBegrenzerschaltungWellenlängeAdiabatischer ProzessSchlauchkupplungOptisches InstrumentFlugzeugträgerComputeranimation
StörgrößenaufschaltungPaketvermittlungOptisches InstrumentGasdichteOptische DichteBand <Textilien>ReglerAtomistikTrenntechnikErderFunkgerätKalenderjahrComputeranimation
LichtManipulatorAngeregter ZustandSchubumkehrSatzspiegelComputeranimation
KolbenverdichterDruckkammerStörgrößenaufschaltungPhotonComputeranimation
Computeranimation
Transkript: Englisch(automatisch erzeugt)
Quantum memory is considered as a basic tool of quantum computing and long-distance quantum communication. The photonic of quantum memory is based on the time-reversibility of light -atom interaction and its most promising technique for storage of multi-cubic light fields. Here we present a generalized scheme of such quantum memory which provides scalable time-reversibility of light-atom interaction.
The static optical quantum memory device can be described as a black box. It takes arbitrary input quantum state of light into the excited atomic coherences on the writing stage. And then this state can be retrieved on demand by some manipulation with the atomic system.
The main challenge of all quantum memory design is an operation of atomic manipulations providing almost perfect unitary evolution during storage and without processes. We use three-level atomic system with an homogeneous broadening on two atomic transitions. Where initially all the atoms are prepared in its ground state.
Then weak or resonant optical signal markets are launched into the medium in the presence of strong classical control field. The two-photon excitation creates defaced long-lift adherence. The control field is switching on after full absorption of the signal path. For retrieval of the signal fields, we reverse the detuning of every atom on the long-lift
level with scaling factor eta and switch on the control field with new Rabi frequency and optical detuning. This procedure leads to the eta signal emission in the backward direction. Change Rabi frequency, optical detuning, and scaling dimensional broadening can cause
wavelength conversion and compression of signal paths with perfect time-reversing area. These two stages of light-atom interaction are described by the system of equations for slowly varying long-lift atomic assurances and light-field amplitudes in the adiabatic limits of optical coherence evolution.
We have found that these systems of equations transform to each other if the following relationships between equations' parameters are whole. It means that we can keep the time-reversibility of this light-atom interaction if changing the spectral property of the atoms is accompanied by keeping the strength of coupling between light and atoms.
Interesting outcome of such transformation is the possibility to change the time duration and carrier wavelength of eta pulses. Moreover, we have calculated the efficiency of this process, taking into account realistic parameters of the atomic system. There are several contributors into overall efficiency.
It is a present of an inhomogeneous broadening on optical transition, the rate of switching off and switching on procedures, and optical density of atomic ensemble. As we found, the optimal strategy for switching procedures is to turn off the control field adiabatically and switch it on as fast as we can.
The observed general reverse symmetry promotes new opportunities for efficient quantum memory and quantum manipulation of arbitrary light states. The performed general analysis would be also useful for further improvement of the photon and high quantum memories. Thank you for watching and enjoy your reading.