We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Engineering drag currents in Coulomb coupled quantum dots

00:00

Formale Metadaten

Titel
Engineering drag currents in Coulomb coupled quantum dots
Serientitel
Anzahl der Teile
31
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Coulomb drag phenomenon in a Coulomb-coupled double quantum dot system is revisited with a simple model that highlights the importance of simultaneous tunneling of electrons. Previously, cotunneling effects on the drag current in mesoscopic setups have been reported both theoretically and experimentally. However, in both cases the sequential tunneling contribution to the drag current was always present unless the drag level position were too far away from resonance. Here, we consider the case of very large Coulomb interaction between the dots, whereby the drag current needs to be assisted by cotunneling events. As a consequence, a quantum coherent drag effect takes place. Further, we demonstrate that by properly engineering the tunneling probabilities using band tailoring it is possible to control the sign of the drag and drive currents, allowing them to flow in parallel or antiparallel directions. We also show that the drag current can be manipulated by varying the drag gate potential and is thus governed by electron- or hole-like transport.
NiederspannungsnetzZementation <Metallurgie>FeldquantElektrische StromdichteGleitlagerElementarteilchenphysikVideotechnik
FeldquantQuantenpunktComputeranimation
Elektrischer LeiterSpannungsänderungWasserwiderstandElektrischer LeiterElektrische StromdichteSpannungsänderung
FeldquantHalbleiterDrehung <Textiltechnik>RaumanzugFeldquantQuantendrahtHalbleiterDrehung <Textiltechnik>Elektrische StromdichteWalken <Textilveredelung>Computeranimation
ModellbauerElektrischer StromFeldquantWasserwiderstandTunneldiodeComputeranimation
GruppenlaufzeitFrequenzumrichterEnergielückeWasserwiderstandFeldquantAprilHaspel <Textiltechnik>Computeranimation
GruppenlaufzeitFrequenzumrichterEnergielückeClosed Loop IdentificationComputeranimation
ElektronAngeregter ZustandTunneldiodeComputeranimation
ProzessleittechnikLinealComputeranimation
Nyquist-KriteriumModellbauerProzessleittechnikProzessleittechnikAngeregter ZustandModellbauerNyquist-KriteriumComputeranimation
Nyquist-KriteriumModellbauerProzessleittechnikProzessleittechnikMehrfachsternHybridraketeComputeranimation
Nyquist-KriteriumModellbauerProzessleittechnikModellbauerEnergielückeComputeranimation
Nyquist-KriteriumModellbauerProzessleittechnikElektrische StromdichteNivelliergerätRauschzahlWasserwiderstandElektrische StromdichteEnergieniveauBlatt <Papier>GleichstromComputeranimation
ModellbauerEnergielückeStörgrößenaufschaltungProzessleittechnikElektrischer StromEnergielückeElektrische StromdichteProzessleittechnikModellbauerBuntheitComputeranimation
Transkript: Englisch(automatisch erzeugt)
In this paper, we show how to engineer or drag current in cloned-coupled quantum dots. Due to the cloned interaction, a current through one conductor can drag a voltage across a nearby conductor. This is the so-called cloned drag.
Many systems have been theoretically and experimentally suggested and tested. For example, 2D, 3D, and 2D-2D semiconductor systems, wrapping double layers, quantum wires in 2Decks, coupled quantum dot systems.
Lapel Sanchez et al. suggested a double quantum dot system to observe the cloned drag. They considered only the sequential tunneling By calculating the electron hopping rate from left to right and from right to left, they showed the existence of the cloned drag.
Previous systems have been experimentally tested by Golda and Goldenglue. They proved the existence of the cloned drag in a double quantum dot system. However, the experiment result is a bit different from theoretical expectation.
When one considers only the sequential tunneling, the cloned gap appears. Why does the cloned gap appear only with the sequential tunneling? The point is that the doubly occupied state is always involved when one considers only the sequential tunneling.
We can avoid the doubly occupied state by including co-tunneling rates. Based on the previous observation, we present a simplest and minimal model. In our model, the doubly occupied state is eliminated.
So, in our stability diagram, just one triple point appears. As advertised, we take into account co-tunneling process. Finally, an edge-dependent hybridization is essential. Specifically, we consider orange and band model.
This figure shows drag current as a function of drag levels. We can see, depending on the values of the drag levels, the direction of the drag current can be positive or negative. That is, drag current can be engineered. This is the main finding of our paper.
In summary, a simple and minimal model that highlights the importance of co-tunneling process is presented. Using the band tailoring, it is possible to control the sign of the drag current. Thanks for your listening.