We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Dark–bright solitons in a superfluid Bose–Fermi mixture

Formal Metadata

Title
Dark–bright solitons in a superfluid Bose–Fermi mixture
Title of Series
Number of Parts
51
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The recent experimental realisation of Bose–Fermi superfluid mixtures of dilute ultracold atomic gases has opened new perspectives in the study of quantum many-body systems. Depending on the values of the scattering lengths and the amount of bosons and fermions, a uniform Bose–Fermi mixture is predicted to exhibit a fully mixed phase, a fully separated phase or, in addition, a purely fermionic phase coexisting with a mixed phase. The occurrence of this intermediate configuration has interesting consequences when the system is nonuniform. In this work we theoretically investigate the case of solitonic solutions of coupled Bogoliubov–de Gennes and Gross–Pitaevskii equations for the fermionic and bosonic components, respectively. We show that, in the partially separated phase, a dark soliton in Fermi superfluid is accompanied by a broad bosonic component in the soliton, forming a dark–bright soliton which keeps full spatial coherence.