We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Conductance microscopy of quantum dots weakly or strongly coupled to the conducting channel

00:00

Formale Metadaten

Titel
Conductance microscopy of quantum dots weakly or strongly coupled to the conducting channel
Serientitel
Anzahl der Teile
49
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We consider scanning gate conductance microscopy of an open quantum dot that is connected to the conducting channel using the wave function description of the quantum transport and a finite difference approach. We discuss the information contained in conductance (G) maps. We demonstrate that the maps for a delta-like potential perturbation exactly reproduce the local density of states for a quantum dot that is weakly coupled to the channel, i.e. when the connection of the channel to the dot transmits a single transport mode only. We explain this finding in terms of the Lippmann–Schwinger perturbation theory. We demonstrate that the signature of the weak coupling conditions is the conductance, which for P subbands at the Fermi level varies between and P in units of . For stronger coupling of the quantum dot to the channel, the G maps resolve the local density of states only for very specific work points, with the Fermi energy coinciding with quasi-bound energy levels.
Widerstand <Elektrotechnik>NiederspannungsnetzElementarteilchenphysikGleitlagerVideotechnikFeldquantFeldeffekttransistorQuantenpunktChannelingSupraleitungMikroskopElektrischer Leiter
Optische KohärenzElektronBlackbox <Bordinstrument>LichtstreuungElektron
FermionFuß <Maßeinheit>Blackbox <Bordinstrument>LichtstreuungErsatzteil
GasdichteElektronElektronendichteElektrischer LeiterSupraleiterComputeranimation
Blei-209FeldquantBlatt <Papier>ChannelingKette <Zugmittel>KurzschlussTechnische ZeichnungDiagramm
GasdichteElektronLichtstreuungBlatt <Papier>ElektronendichteSchwache LokalisationFlussdiagramm
PapierstaubungAlvisFähreWiderstand <Elektrotechnik>SteckkarteRuhestromSpeckle-InterferometrieSchwache LokalisationSupraleiterGate <Elektronik>PagerStücklisteMikroskopSpannungsabhängigkeitSatzspiegelRastersondenmikroskopieFlussdiagramm
SonnengranulationÜberlagerungsempfängerPatrone <Munition>Schwache LokalisationSupraleiterSteckkarteSupraleitungMarsflugElektrischer LeiterKonvektionComputeranimationFlussdiagramm
ÜberlagerungsempfängerDreidimensionale IntegrationFeldeffekttransistorChannelingDreidimensionale IntegrationResonanzenergieFeldquantSchmalspurlokomotiveSchlauchkupplungElektronRauschzahlSchwache LokalisationAbtriebswelleSummerSteckkarteWocheFernordnungAmplitudeMonatComputeranimation
StörgrößeWiderstand <Elektrotechnik>ElektronSchmalspurlokomotiveSupraleiterFernordnungQuantenwellNanotechnologieStörgrößeSchwache LokalisationFeldquantComputeranimation
StörgrößeWiderstand <Elektrotechnik>GleichstromWetterSteckkartePatrone <Munition>FeldeffekttransistorElektronendichteSchwache LokalisationFeldquantWarmumformenTEM-WelleÖffentliches VerkehrsmittelComputeranimation
Transkript: Englisch(automatisch erzeugt)
Conductance microscopy of quantum dots weakly are strongly coupled to the conducting channel. We consider coherent scattering of Fermi-level electron by solving the Schrodinger equation. We have incoming electron wave, here from the left, for which due to the elastic scattering within the black box
some part of wave function can be backscattered the input lead, or transmitted through the system with some probabilities r and t. By solving the Schrodinger equation with scattering boundary conditions, we obtain conductance of the system G and electron density.
In this paper we consider the system with quantum dot connected to the channel by a short link of width W. In the paper we consider the local density of states, which is defined as a sum of electron densities obtained from the scattering problem for electron incoming to the system from the left and from the right.
Now the basic question is, is it possible to measure experimentally local density of states? One of the ideas to do that is to use the scanning gate microscopy technique, in which bias tip scans the area above the sample changing locally potential at some position x and y,
thus the conductance G of the system. The hypothesis is that the obtained image should be somehow correlated with the local density of states. On this example we show two results for different working points. In the first case we see that obtained conductance map is where correlated with the corresponding local density of states.
But in the second case we show that the change of the parameters may lead to the lack of the correlation. Thus we see that the correspondence between local density of states and conduction maps is not always preserved, and it depends on the specific parameters of the system.
Here we present the results for transmission T and correlation R between local density of states and G maps, in function of width of the vertical channel W and Fermi energy. The first figure shows that as the width W is small, the T function is rather big and characterized by narrow Fano resonances.
Large width W leads to a complex behavior of T. In the second figure we see that for small values of W the correlation is large, either 1 or minus 1. For larger values of W when coupling is stronger the correlation decreases and becomes a complicated function of Fermi energy.
From this we see that local density of states is well correlated with G map when the coupling between channel and the quantum well is weak enough. This is when the only one subband is transported for electrons in the vertical channel. In order to explain this finding we use first correction to the conductance which is given by following equation,
where G0 is a conductance of unperturbed system and the second term is the first correction to the conductance obtained from the perturbation theory. From the second equation we see that this correction is proportional to the product of wave function of electron incoming from the left and electron incoming from the right.
In order to make this correction proportional to the local density of states, both wave function have to be the same inside the quantum well. Let us now consider pictures below. In the first case, when the narrowing is small, here 50 nm, the electron density inside the quantum well is the same for both incoming directions.
This is the case when the only first mode propagates in the vertical channel, and for this case we always get high correlation between local density of states and G maps. For the wider channels the number of allowed transverse modes increases, thus the corresponding
electron densities for both incoming directions may be different which leads to low correlation. This is the main finding of our work.