We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Domain percolation in a quenched ferromagnetic spinor condensate

00:00

Formale Metadaten

Titel
Domain percolation in a quenched ferromagnetic spinor condensate
Serientitel
Anzahl der Teile
40
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
We show that the early time dynamics of easy-axis magnetic domain formation in a spinor condensate is described by percolation theory. These dynamics could be initialized using a quench of the spin-dependent interaction parameter. We propose a scheme to observe the same dynamics by quenching the quadratic Zeeman energy and applying a generalized spin rotation to a ferromagnetic spin-1 condensate. Using simulations we investigate the finite-size scaling behavior to extract the correlation length critical exponent and the transition point. We analyze the sensitivity of our results to the early-time dynamics of the system, the quadratic Zeeman energy, and the threshold condition used to define the positive (percolating) domains.
NiederspannungsnetzFerromagnetismusDomäne <Kristallographie>GleitlagerVideotechnikComputeranimation
GasSpinKondensatorAngeregter ZustandAtomistikBosonEnergieniveauMagnetisierungDomäne <Kristallographie>ZugangsnetzWarmumformenPatrone <Munition>Besprechung/Interview
Angeregter ZustandBesprechung/Interview
SpinKondensatorDomäne <Kristallographie>Besprechung/Interview
GleichstromBesprechung/Interview
KondensatorKristallgitterLuftstromDomäne <Kristallographie>BildqualitätAngeregter ZustandComputeranimation
SpinCocktailparty-EffektBrennpunkt <Optik>Domäne <Kristallographie>Computeranimation
FernordnungDomäne <Kristallographie>Computeranimation
AtomistikExplorer <Satellit>FernordnungDomäne <Kristallographie>WarmumformenBesprechung/Interview
StandardzelleAtomistikRotationszustandFahrradständerOptische KohärenzDomäne <Kristallographie>SpinBesprechung/Interview
Domäne <Kristallographie>AtomistikSchlichte <Textiltechnik>TheodolitGlättung <Elektrotechnik>SchwellenspannungBegrenzerschaltungDomäne <Kristallographie>Diagramm
SpinErwärmungElektronendichtePostkutscheFormationsflugDomäne <Kristallographie>StandardzelleBesprechung/Interview
GasWarmumformenAtomistikUltra <Funkaufklärung>Besprechung/Interview
FeldquantComputeranimation
StörstelleComputeranimation
Transkript: Englisch(automatisch erzeugt)
Kia ora, I'm Nanako, and this is Shreya. In this work, we theoretically explore the geometrical statistical properties of the spin domains that form an equine spinor Bose-Einstein condensate.
A spinor Bose-Einstein condensate is an ultracold gas of bosonic atoms in which each atom has access to several different spin states. In our case, we study a spin-one system with three accessible spin levels. The atoms in the condensate we consider also have ferromagnetic interactions, which means that these interactions favour the
system magnetising. We consider the system prepared in an initial state that is unmagnetised. The quench is implemented by suddenly changing the quadratic Zeeman energy to a value at which this condensate is unstable, so that it forms easy-axis magnetic domains. That is, spin domains that are aligned with or against the direction set by the Zeeman field.
In this simulation, we show the dynamics of a small quasi-two-dimensional condensate undergoing this evolution. Starting from the unmagnetised state, you will notice that small domains form. Then, as time progresses, these domains tend to grow larger. We analyse the structure of these domains once they form. To do this, we have applied
the ideas of percolation theory. Notably, we focus our attention on the positive or upward-pointing spin domains. We can make a binary image by setting all positive domains to be white. We examine if any of these domains percolate across the system. Here
is an example of a percolating domain that connects from the lower boundary to the top boundary. This domain also happens to connect the left and right boundaries. In order to explore percolation characteristics, we need to change the relative portion of atoms in the positive domain and see how this affects the probability of a percolating domain occurring. In this work, we varied the positive domain populations using a coherent
spin rotation, a standard technique of atomic physics experimental toolbox. We find that the probability of finding a percolating domain varies smoothly as a portion of positive atoms is varied, thus identifying a smooth percolation transition. Conducting
a finite size analysis, we examine how this probability changes as the system size increases. This allows us to extrapolate to the thermodynamic limit where the transition is discontinuous, and hence identify the percolation threshold and the correlation length critical exponent. In addition to showing that spin domain formation can be described by percolation
theory, we also examine the feasibility of studying this behavior in experiments. That is, we examine factors such as the time dependence of domain growth and the continuous nature of the spin density on the percolation analysis. We also suggest a way to minimize heating from the quench by preparing a sociable initial stage.
We hope that this work will inspire experiments to make the first studies of percolation in an ultra-cold atomic gas.