We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

On the energy landscape of 3D spin Hamiltonians with topological order

Formal Metadata

Title
On the energy landscape of 3D spin Hamiltonians with topological order
Title of Series
Number of Parts
48
Author
License
CC Attribution - NonCommercial - NoDerivatives 3.0 Germany:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
We explore feasibility of a quantum self-correcting memory based on 3D spin Hamiltonians with topological quantum order in which thermal diffusion of topological defects is suppressed by macroscopic energy barriers. To this end we characterize the energy landscape of stabilizer code Hamiltonians with local bounded-strength interactions which have a topologically ordered ground state but do not have string-like logical operators. We prove that any sequence of local errors mapping a ground state of such Hamiltonian to an orthogonal ground state must cross an energy barrier growing at least as a logarithm of the lattice size. Our bound on the energy barrier is shown to be tight up to a constant factor for one particular 3D spin Hamiltonian.