We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Colmez' conjecture in average

Formal Metadata

Title
Colmez' conjecture in average
Title of Series
Number of Parts
26
Author
License
CC Attribution 3.0 Unported:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
This is a report on a joint work with Xinyi Yuan on a conjectured formula of Colmez about the Faltings heights of CM abelian varieties. I will sketch a deduction of this formula in average of CM types from our early work on Gross-Zagier formula. When combined with a recent work of Tsimerman, this result implies the Andre-Oort conjecture for the moduli of abelian varieties. Our method is different than a recently announced proof of a weaker form of the average formula by Andreatta, Howard, Goren, and Madapusi Pera: we use neither high dimensional Shimura varieties nor Borcherds' liftings.