We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Using kernels to detect abrupt changes in time series

Formale Metadaten

Titel
Using kernels to detect abrupt changes in time series
Serientitel
Teil
2
Anzahl der Teile
10
Autor
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
In this talk we discuss the change-point detection problem when dealing with complex data. Our goal is to present a new procedure involving positive semidefinite kernels and allowing to detect abrupt changes arising in the full distribution of the observations along the time (and not only in their means). This two-stage procedure is based first on dynamic programming, and second on a new $l_0$-type penalty derived from a non-asympsotic model selection result applying to vectors in a reproducing kernel Hilbert space. Since our procedure relies on the dynamic programming algorithm, which induces a high computational complexity at the first step, we will also discuss an improved version of this first step allowing to achieve a complexity of $O(n^2)$ in time and $O(n)$ in space. Finally, we will illustrate the behavior of our kernel change-point procedure on a wide range of simulated data. In particular we empirically validate our penalty since the resulting penalized criterion recovers the true (number of) change-points with high probability. We also infer the influence of the kernel on the final results in practice.