We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Knots and dynamics

Formal Metadata

Title
Knots and dynamics
Title of Series
Number of Parts
33
Author
License
CC Attribution 3.0 Germany:
You are free to use, adapt and copy, distribute and transmit the work or content in adapted or unchanged form for any legal purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
The trajectories of a vector field in 3-space can be very entangled; the flow can swirl, spiral, create vortices etc. Periodic orbits define knots whose topology can sometimes be very complicated. In this talk, I will survey some advances in the qualitative and quantitative description of this kind of phenomenon. The first part will be devoted to vorticity, helicity, and asymptotic cycles for flows. The second part will deal with various notions of rotation and spin for surface diffeomorphisms. Finally, I will describe the important example of the geodesic flow on the modular surface, where the linking between geodesics turns out to be related to well-known arithmetical functions.
Keywords