We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Relative Gibbs measures and relative equilibrium measures

Formal Metadata

Title
Relative Gibbs measures and relative equilibrium measures
Title of Series
Number of Parts
15
Author
License
CC Attribution - NonCommercial - NoDerivatives 4.0 International:
You are free to use, copy, distribute and transmit the work or content in unchanged form for any legal and non-commercial purpose as long as the work is attributed to the author in the manner specified by the author or licensor.
Identifiers
Publisher
Release Date
Language

Content Metadata

Subject Area
Genre
Abstract
In equilibrium statistical mechanics, the macroscopic states of a system at thermal equilibrium are described by probability measures on the space of microscopic states that maximize pressure. For systems whose microscopic states are symbolic configurations from a subshift, Dobrushin, Lanford and Ruelle showed that under broad conditions, global and local equilibrium conditions are equivalent, that is, "equilibrium measures" are the same as (shift-invariant) "Gibbs measures". I will discuss some variants and generalizations of this theorem, in particular, a broad generalization to systems in contact with a random environment. Some nice symbolic dynamics issues arise. The underlying lattice can be any countable amenable group.