New Journal of Physics, Volume 17, 2015
62
2015
714
3 Stunden 53 Minuten
Ergebnisse 1-36 von 62
04:53
1Kirk, Paul et al.Random matrix theory (RMT) has found applications throughout physics and applied mathematics, in subject areas as diverse as communications networks, population dynamics, neuroscience, and models of the banking system. Many of these analyses exploit elegant analytical results, particularly the circular law and its extensions. In order to apply these results, assumptions must be made about the distribution of matrix elements. Here we demonstrate that the choice of matrix distribution is crucial. In particular, adopting an unrealistic matrix distribution for the sake of analytical tractability is liable to lead to misleading conclusions. We focus on the application of RMT to the long-standing, and at times fractious, 'diversity-stability debate', which is concerned with establishing whether large complex systems are likely to be stable. Early work (and subsequent elaborations) brought RMT to bear on the debate by modelling the entries of a system's Jacobian matrix as independent and identically distributed (i.i.d.) random variables. These analyses were successful in yielding general results that were not tied to any specific system, but relied upon a restrictive i.i.d. assumption. Other studies took an opposing approach, seeking to elucidate general principles of stability through the analysis of specific systems. Here we develop a statistical framework that reconciles these two contrasting approaches. We use a range of illustrative dynamical systems examples to demonstrate that: (i) stability probability cannot be summarily deduced from any single property of the system (e.g. its diversity); and (ii) our assessment of stability depends on adequately capturing the details of the systems analysed. Failing to condition on the structure of dynamical systems will skew our analysis and can, even for very small systems, result in an unnecessarily pessimistic diagnosis of their stability.
2015Institute of Physics (IOP) et al.
03:14
Kim, Heetae et al.The synchrony of electric power systems is important in order to maintain a stable electricity supply. Recently, the measure basin stability was introduced to quantify a node's ability to recover its synchronization when perturbed. In this work, we focus on how basin stability depends on the coupling strength between nodes. We use the Chilean power grid as a case study. In general, basin stability goes from zero to one as coupling strength increases. However, this transition does not happen at the same value for different nodes. By understanding the transition for individual nodes, we can further characterize their role in the power-transmission dynamics. We find that nodes with an exceptionally large transition window also have a low community consistency. In other words, they are hard to classify to one community when applying a community detection algorithm. This also gives an efficient way to identify nodes with a long transition window (which is computationally time consuming). Finally, to corroborate these results, we present a stylized example network with prescribed community structures that captures the mentioned characteristics of the basin stability transition and recreates our observations.
2015Institute of Physics (IOP) et al.
02:56
12Daminelli, Simone et al.Bipartite networks are powerful descriptions of complex systems characterized by two different classes of nodes and connections allowed only across but not within the two classes. Unveiling physical principles, building theories and suggesting physical models to predict bipartite links such as product-consumer connections in recommendation systems or drug–target interactions in molecular networks can provide priceless information to improve e-commerce or to accelerate pharmaceutical research. The prediction of nonobserved connections starting from those already present in the topology of a network is known as the link-prediction problem. It represents an important subject both in many-body interaction theory in physics and in new algorithms for applied tools in computer science. The rationale is that the existing connectivity structure of a network can suggest where new connections can appear with higher likelihood in an evolving network, or where nonobserved connections are missing in a partially known network. Surprisingly, current complex network theory presents a theoretical bottle-neck: a general framework for local-based link prediction directly in the bipartite domain is missing. Here, we overcome this theoretical obstacle and present a formal definition of common neighbour index and local-community-paradigm (LCP) for bipartite networks. As a consequence, we are able to introduce the first node-neighbourhood-based and LCP-based models for topological link prediction that utilize the bipartite domain. We performed link prediction evaluations in several networks of different size and of disparate origin, including technological, social and biological systems. Our models significantly improve topological prediction in many bipartite networks because they exploit local physical driving-forces that participate in the formation and organization of many real-world bipartite networks. Furthermore, we present a local-based formalism that allows to intuitively implement neighbourhood-based link prediction entirely in the bipartite domain.
2015Institute of Physics (IOP) et al.
04:04
4Probst, R. A . et al.We investigate a new scheme for astronomical spectrograph calibration using the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our concept is based upon a single-mode fiber channel, that simultaneously feeds the spectrograph with comb light and sunlight. This yields nearly perfect spatial mode matching between the two sources. In combination with the absolute calibration provided by the frequency comb, this method enables extremely robust and accurate spectroscopic measurements. The performance of this scheme is compared to a sequence of alternating comb and sunlight, and to absorption lines from Earth's atmosphere. We also show how the method can be used for radial-velocity detection by measuring the well-explored 5 min oscillations averaged over the full solar disk. Our method is currently restricted to solar spectroscopy, but with further evolving fiber-injection techniques it could become an option even for faint astronomical targets.
2015Institute of Physics (IOP) et al.
03:53
24Rastelli, Gianluca et al.We analyze the coherent dynamics of a fluxonium device (Manucharyan et al 2009 Science 326 113) formed by a superconducting ring of Josephson junctions in which strong quantum phase fluctuations are localized exclusively on a single weak element. In such a system, quantum phase tunnelling by occurring at the weak element couples the states of the ring with supercurrents circulating in opposite directions, while the rest of the ring provides an intrinsic electromagnetic environment of the qubit. Taking into account the capacitive coupling between nearest neighbors and the capacitance to the ground, we show that the homogeneous part of the ring can sustain electrodynamic modes which couple to the two levels of the flux qubit. In particular, when the number of Josephson junctions is increased, several low-energy modes can have frequencies lower than the qubit frequency. This gives rise to a quasiperiodic dynamics, which manifests itself as a decay of oscillations between the two counterpropagating current states at short times, followed by oscillation-like revivals at later times. We analyze how the system approaches such a dynamics as the ring's length is increased and discuss possible experimental implications of this non-adiabatic regime.
2015Institute of Physics (IOP) et al.
03:57
1Chiang, Cheng-Tien et al.Since the discovery of the photoelectric effect, photoelectron spectroscopy has evolved into the most powerful technique for studying the electronic structure of materials. Moreover, the recent combination of photoelectron experiments with attosecond light sources using high-order harmonic generation (HHG) allows direct observation of electron dynamics in real time. However, the efficiency of these experiments is greatly limited by space-charge effects at typically low repetition rates of photoexcitation. Here, we demonstrate HHG-based laboratory photoemission experiments at a photoelectron count rate of 1 × 105 electrons/s and characterize the main features of the electronic band structure of Ag(001) within several seconds without significant degradation by the space-charge effects. The combination of a compact HHG light source at megahertz repetition rates with the efficient collection of photoelectrons using time-of-flight spectroscopy may allow rapid investigation of electronic bands in a flexible laboratory environment and pave the way for an efficient design of attosecond spectroscopy and microscopy.
2015Institute of Physics (IOP) et al.
03:29
11Lit, Joost van der et al.Semiconducting graphene nanoribbons (GNRs) are envisioned to play an important role in future electronics. This requires the GNRs to be placed on a surface where they may become strained. Theory predicts that axial strain, i.e. in-plane bending of the GNR, will cause a change in the band gap of the GNR. This may negatively affect device performance. Using the tip of a scanning tunneling microscope we controllably bent and buckled atomically well-defined narrow armchair GNR and subsequently probed the changes in the local density of states. These experiments show that the band gap of 7-ac-GNR is very robust to in-plane bending and out-of-plane buckling.
2015Institute of Physics (IOP) et al.
01:41
1Mones, Enys et al.A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider the adhesion difference-driven segregation of actively moving units, a fundamental but still poorly explored aspect of collective motility. In particular, we propose a model in which particles have a tendency to adhere through a mechanism which makes them both stay in touch and synchronize their direction of motion—but the interaction is limited to particles of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that in a very large system of particles, interacting without explicit alignment rule, three basic segregation regimes seem to exist as a function of time: (i) at the beginning the time dependence of the correlation length is analogous to that predicted by the Cahn–Hilliard theory, (ii) next rapid segregation occurs characterized with a separation of the different kinds of units being faster than any previously suggested speed, finally, (iii) the growth of the characteristic sizes in the system slows down due to a new regime in which self-confined, rotating, splitting and re-joining clusters appear. Our results can explain recent observations of segregating tissue cells in vitro.
2015Institute of Physics (IOP) et al.
03:26
2Poyser, Caroline L. et al.We study experimentally and theoretically the effects of high-frequency strain pulse trains on the charge transport in a weakly coupled semiconductor superlattice. In a frequency range of the order of 100 GHz such excitation may be considered as single harmonic hypersonic excitation. While travelling along the axis of the SL, the hypersonic acoustic wavepacket affects the electron tunnelling, and thus governs the electrical current through the device. We reveal how the change of current depends on the parameters of the hypersonic excitation and on the bias applied to the superlattice. We have found that the changes in the transport properties of the superlattices caused by the acoustic excitation can be largely explained using the current–voltage relation of the unperturbed system. Our experimental measurements show multiple peaks in the dependence of the transferred charge on the repetition rate of the strain pulses in the train. We demonstrate that these resonances can be understood in terms of the spectrum of the applied acoustic perturbation after taking into account the multiple reflections in the metal film serving as a generator of hypersonic excitation. Our findings suggest an application of the semiconductor superlattice as a hypersonic-electrical transducer, which can be used in various microwave devices.
2015Institute of Physics (IOP) et al.
03:32
3Dierckx, Hans et al.Reaction-diffusion mechanics (RDM) systems describe a wide range of practically important phenomena where deformation substantially affects wave and vortex dynamics. Here, we develop the first theory to describe the dynamics of rotating spiral waves in RDM systems, combining response function theory with a mechanical Green's function. This theory explains the mechanically-induced drift of spiral waves as a resonance phenomenon, and it can predict the drift trajectories and the final attractors from measurable characteristics of the system. Theoretical predictions are confirmed by numerical simulations. The results can be applied to cardiac tissue, where the drift of spiral waves is an important factor in determining different types of cardiac arrhythmias.
2015Institute of Physics (IOP) et al.
02:20
Stokes, Adam et al.Boundary conditions (BCs) for the Maxwell and Dirac fields at material surfaces are widely-used and physically well-motivated, but do not appear to have been generalized to deal with higher spin fields. As a result there is no clear prescription as to which BCs should be selected in order to obtain physically-relevant results pertaining to confined higher spin fields. This lack of understanding is significant given that boundary-dependent phenomena are ubiquitous across physics, a prominent example being the Casimir effect. Here, we use the two-spinor calculus formalism to present a unified treatment of BCs routinely employed in the treatment of spin- and spin-1 fields. We then use this unification to obtain a BC that can be applied to massless fields of any spin, including the spin-2 graviton, and its supersymmetric partner the spin- gravitino.
2015Institute of Physics (IOP) et al.
03:52
3Araújo, Mateus et al.Our common understanding of the physical world deeply relies on the notion that events are ordered with respect to some time parameter, with past events serving as causes for future ones. Nonetheless, it was recently found that it is possible to formulate quantum mechanics without any reference to a global time or causal structure. The resulting framework includes new kinds of quantum resources that allow performing tasks—in particular, the violation of causal inequalities—which are impossible for events ordered according to a global causal order. However, no physical implementation of such resources is known. Here we show that a recently demonstrated resource for quantum computation—the quantum switch—is a genuine example of 'indefinite causal order'. We do this by introducing a new tool—the causal witness—which can detect the causal nonseparability of any quantum resource that is incompatible with a definite causal order. We show however that the quantum switch does not violate any causal inequality.
2015Institute of Physics (IOP) et al.
03:03
4Ma, Yi-An et al.We revisit the Ornstein–Uhlenbeck (OU) process as the fundamental mathematical description of linear irreversible phenomena, with fluctuations, near an equilibrium. By identifying the underlying circulating dynamics in a stationary process as the natural generalization of classical conservative mechanics, a bridge between a family of OU processes with equilibrium fluctuations and thermodynamics is established through the celebrated Helmholtz theorem. The Helmholtz theorem provides an emergent macroscopic 'equation of state' of the entire system, which exhibits a universal ideal thermodynamic behavior. Fluctuating macroscopic quantities are studied from the stochastic thermodynamic point of view and a non-equilibrium work relation is obtained in the macroscopic picture, which may facilitate experimental study and application of the equalities due to Jarzynski, Crooks, and Hatano and Sasa.
2015Institute of Physics (IOP) et al.
03:56
6Ni, Xu et al.Recent explorations of topology in physical systems have led to a new paradigm of condensed matters characterized by topologically protected states and phase transition, for example, topologically protected photonic crystals enabled by magneto-optical effects. However, in other wave systems such as acoustics, topological states cannot be simply reproduced due to the absence of similar magnetics-related sound–matter interactions in naturally available materials. Here, we propose an acoustic topological structure by creating an effective gauge magnetic field for sound using circularly flowing air in the designed acoustic ring resonators. The created gauge magnetic field breaks the time-reversal symmetry, and therefore topological properties can be designed to be nontrivial with non-zero Chern numbers and thus to enable a topological sonic crystal, in which the topologically protected acoustic edge-state transport is observed, featuring robust one-way propagation characteristics against a variety of topological defects and impurities. Our results open a new venue to non-magnetic topological structures and promise a unique approach to effective manipulation of acoustic interfacial transport at will.
2015Institute of Physics (IOP) et al.
05:14
4Feng, Ling et al.Interdependent networks in areas ranging from infrastructure to economics are ubiquitous in our society, and the study of their cascading behaviors using percolation theory has attracted much attention in recent years. To analyze the percolation phenomena of these systems, different mathematical frameworks have been proposed, including generating functions and eigenvalues, and others. These different frameworks approach phase transition behaviors from different angles and have been very successful in shaping the different quantities of interest, including critical threshold, size of the giant component, order of phase transition, and the dynamics of cascading. These methods also vary in their mathematical complexity in dealing with interdependent networks that have additional complexity in terms of the correlation among different layers of networks or links. In this work, we review a particular approach of simple, self-consistent probability equations, and we illustrate that this approach can greatly simplify the mathematical analysis for systems ranging from single-layer network to various different interdependent networks. We give an overview of the detailed framework to study the nature of the critical phase transition, the value of the critical threshold, and the size of the giant component for these different systems.
2015Institute of Physics (IOP) et al.
02:39
2Gnecco, Enrico et al.When the shear stress on a compliant surface exceeds the yield strength of the material, a periodic wrinkle pattern is often observed. This phenomenon has been also recognized at the nanometer scale on polymers, metals, ionic crystals and semiconductors. In those cases, the mechanical stress can be efficiently provided by a sharp indenter elastically driven at constant velocity along the surface. Here we suggest that the formation of such surface ripples can be explained by the competition between the driving spring force and the plastic response of the substrate. In particular, we show how the ripples are expected to disappear when the indentation rate is below a critical value or, alternatively, when the sliding velocity or the lateral stiffness of the contact are too high. The model results are compared to atomic force microscopy experiments on a solvent-enriched polystyrene surface, where the rippling formation is enhanced at room temperature, compared to bulk melts. A similar approach could be employed to describe rippling phenomena on larger scales.
2015Institute of Physics (IOP) et al.
03:35
4Hirvonen, Liisa M. et al.Fast frame rate complementary metal–oxide–semiconductor cameras in combination with photon counting image intensifiers can be used for microsecond resolution wide-field fluorescence lifetime imaging with single photon sensitivity, but the time resolution is limited by the camera exposure time. We show here how the image intensifier's P20 phosphor afterglow can be exploited for accurate timing of photon arrival well below the camera exposure time. By taking ratios of the intensity of the photon events in two subsequent frames, photon arrival times were determined with 300 ns precision with 18.5 μs frame exposure time (54 kHz camera frame rate). Decays of ruthenium and iridium-containing compounds with around 1 μs lifetimes were mapped with this technique, including in living HeLa cells, using excitation powers below 0.5 μW. Details of the implementation to calculate the arrival time from the photon event intensity ratio are discussed, and we speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could be possible.
2015Institute of Physics (IOP) et al.
03:14
32Silveri, M. P. et al.When the level separation of a qubit is modulated periodically across an avoided crossing, tunneling to the excited state—and consequently Landau–Zener–Stückelberg interference—can occur. The types of modulation studied so far correspond to a continuous change of the level separation. Here we study periodic latching modulation, in which the level separation is switched abruptly between two values and is kept constant otherwise. In this case, the conventional approach based on the asymptotic Landau–Zener formula for transition probabilities is not applicable. We develop a novel adiabatic-impulse model for the evolution of the system and derive the resonance conditions. Additionally, we derive analytical results based on the rotating-wave approximation (RWA). The adiabatic-impulse model and the RWA results are compared with those of a full numerical simulation. These theoretical predictions are tested in an experimental setup consisting of a transmon whose flux bias is modulated with a square wave form. A rich spectrum is observed, with distinctive features correspoding to two regimes: slow-modulation and fast-modulation. These experimental results are shown to be in very good agreement with the theoretical models. Also, differences with respect to the well known case of sinusoidal modulation are discussed, both theoretically and experimentally.
2015Institute of Physics (IOP) et al.
03:55
16Cho, M.-H. et al.A new mechanism for electromagnetic emission in the terahertz (THz) frequency regime from laser-plasma interactions is described. A localized and long-lasting transverse current is produced by two counter-propagating short laser pulses in weakly magnetized plasma. We show that the electromagnetic wave radiating from this current source, even though its frequency is close to cut-off of the ambient plasma, grows and diffuses towards the plasma-vacuum boundary, emitting a strong monochromatic THz wave. With driving laser pulses of moderate power, the THz wave has a field strength of tens of MV m−1, a frequency of a few THz and a quasi-continuous power that exceeds all previous monochromatic THz sources. The novelty of the mechanism lies in a diffusing electromagnetic wave close to cut-off, which is modelled by a continuously driven complex diffusion equation.
2015Institute of Physics (IOP) et al.
03:08
15Sundar, Shyam et al.Superconducting transition temperature TC of some of the cubic β phase Rex alloys with is an order of magnitude higher than that in the elements Mo and Re. We investigate this rather enigmatic issue of the enhanced superconductivity with the help of experimental studies of the temperature dependent electrical resistivity (ρ(T)) and heat capacity (CP(T)), as well as the theoretical estimation of electronic density of states (DOS) using band structure calculations. The ρ(T) in the normal state of the Rex alloys with is distinctly different from that of Mo and the alloys with We have also observed that the Sommerfeld coefficient of electronic heat capacity γ, superconducting transition temperature TC and the DOS at the Fermi level show an abrupt change above . The analysis of these results indicates that the value of electron–phonon coupling constant λep required to explain the TC of the alloys with is much higher than that estimated from γ. On the other hand the analysis of the results of the ρ(T) reveals the presence of phonon assisted inter-band s–d scattering in this composition range. We argue that a strong electron–phonon coupling arising due to the multiband effects is responsible for the enhanced TC in the β phase Rex alloys with .
2015Institute of Physics (IOP) et al.
02:37
8Limpert, Steve et al.Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron–hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron–hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices.
2015Institute of Physics (IOP) et al.
02:00
3Wang, Yi-Hsieh et al.The fundamental dynamics of ultracold atomtronic devices are reflected in their phonon modes of excitation. We probe such a spectrum by applying a harmonically driven potential barrier to a 23Na Bose–Einstein condensate in a ring-shaped trap. This perturbation excites phonon wavepackets. When excited resonantly, these wavepackets display a regular periodic structure. The resonant frequencies depend upon the particular configuration of the barrier, but are commensurate with the orbital frequency of a Bogoliubov sound wave traveling around the ring. Energy transfer to the condensate over many cycles of the periodic wavepacket motion causes enhanced atom loss from the trap at resonant frequencies. Solutions of the time-dependent Gross–Pitaevskii equation exhibit quantitative agreement with the experimental data. We also observe the generation of supersonic shock waves under conditions of strong excitation, and collisions of two shock wavepackets.
2015Institute of Physics (IOP) et al.
04:43
7Onvlee, Jolijn et al.A Stark decelerator is used in combination with velocity map imaging to study collisions of NO radicals with rare gas atoms in a counterpropagating crossed beam geometry. This powerful combination of techniques results in scattering images with extremely high resolution, in which rotational and L-type rainbows with superimposed quantum mechanical diffraction oscillations are visible. The experimental data are in excellent agreement with quantum mechanical scattering calculations. Furthermore, hard-shell models and a partial wave analysis are used to clarify the origin of the various structures that are visible. A specific feature is found for NO molecules colliding with Ar atoms that is extremely sensitive to the precise shape of the potential energy surface. Its origin is explained in terms of interfering partial waves with very high angular momentum, corresponding to trajectories with large impact parameters.
2015Institute of Physics (IOP) et al.
03:51
14Santalla, Silvia N et al.We consider a model of a quenched disordered geometry in which a random metric is defined on , which is flat on average and presents short-range correlations. We focus on the statistical properties of balls and geodesics, i.e., circles and straight lines. We show numerically that the roughness of a ball of radius R scales as , with a fluctuation exponent , while the lateral spread of the minimizing geodesic between two points at a distance L grows as , with wandering exponent value . Results on related first-passage percolation problems lead us to postulate that the statistics of balls in these random metrics belong to the Kardar–Parisi–Zhang universality class of surface kinetic roughening, with ξ and χ relating to critical exponents characterizing a corresponding interface growth process. Moreover, we check that the one-point and two-point correlators converge to the behavior expected for the Airy-2 process characterized by the Tracy–Widom (TW) probability distribution function of the largest eigenvalue of large random matrices in the Gaussian unitary ensemble (GUE). Nevertheless extreme-value statistics of ball coordinates are given by the TW distribution associated with random matrices in the Gaussian orthogonal ensemble. Furthermore, we also find TW–GUE statistics with good accuracy in arrival times.
2015Institute of Physics (IOP) et al.
04:44
7Safaei, S. et al.We envision that the quantum spin Hall effect should be observed in (111)-oriented thin films of SnSe and SnTe topological crystalline insulators. Using a tight-binding approach supported by first-principles calculations of the band structures, we demonstrate that in these films the energy gaps in the two-dimensional band spectrum depend in an oscillatory fashion on the layer thickness. These results as well as the calculated topological invariant indexes and edge state spin polarizations show that for films ~20–40 monolayers thick a two-dimensional topological insulator phase appears. In this range of thicknesses in both SnSe and SnTe, (111)-oriented films edge states with Dirac cones with opposite spin polarization in their two branches are obtained. While in the SnTe layers a single Dirac cone appears at the projection of the point of the two-dimensional Brillouin zone, in the SnSe (111)-oriented layers three Dirac cones at points projections are predicted.
2015Institute of Physics (IOP) et al.
01:53
4Bednorz, AdamThe question of whether quantum measurements reflect some underlying objective reality has no generally accepted answer. We show that a description of such reality is possible under natural conditions such as linearity and causality, although in terms of moments and cumulants of finite order and without relativistic invariance. The proposed construction of observations' probability distribution originates from weak, noninvasive measurements, with detection error replaced by some external finite noise. The noise allows us to construct microscopic objective reality, but remains dynamically decoupled and hence unobservable at the macroscopic level.
2015Institute of Physics (IOP) et al.
03:53
1Fruchtman, Amir et al.We introduce a new analytical method for studying the open quantum systems problem of a discrete system weakly coupled to an environment of harmonic oscillators. Our approach is based on a phase space representation of the density matrix for a system coupled to a two-tiered environment. The dynamics of the system and its immediate environment are resolved in a non-Markovian way, and the environmental modes of the inner environment can themselves be damped by a wider 'universe'. Applying our approach to the canonical cases of the Rabi and spin-boson models we obtain new analytical expressions for an effective thermalization temperature and corrections to the environmental response functions as direct consequences of considering such a tiered environment. A comparison with exact numerical simulations confirms that our approximate expressions are remarkably accurate, while their analytic nature offers the prospect of deeper understanding of the physics which they describe. A unique advantage of our method is that it permits the simultaneous inclusion of a continuous bath as well as discrete environmental modes, leading to wide and versatile applicability.
2015Institute of Physics (IOP) et al.
03:15
Zhu, Qiang et al.We report the observation of a universal behavior of ultracold quantum critical (QC) Bose gases trapped in a one-dimensional optical lattice. We extract the density probability distributions from the measured atomic density of the rubidium Bose gases after a free expansion time. The density probability is found to follow a simple exponential law once the lattice system has entered the QC region above the Berezinskii–Kosterlitz–Thouless transition. We show that, in addition to relative phase fluctuations between the subcondensates in different lattice wells, there also exist spatial phase fluctuations within single lattice wells in this QC region. The universal density-probability distribution can thus be well understood by a simple theoretical model taking into account these two kinds of phase fluctuations.
2015Institute of Physics (IOP) et al.
06:34
1Dvir, Liron et al.Metastasis formation is a major cause of mortality in cancer patients and includes tumor cell relocation to distant organs. A metastatic cell invades through other cells and extracellular matrix by biochemical attachment and mechanical force application. Force is used to move on or through a 2- or 3-dimensional (3D) environment, respectively, or to penetrate a 2D substrate. We have previously shown that even when a gel substrate is impenetrable, metastatic breast cancer cells can still indent it by applying force. Cells typically apply force through the acto-myosin network, which is mechanically connected to the nucleus. We develop a 3D image-analysis to reveal relative locations of the cell elements, and show that as cells apply force to the gel, a coordinated process occurs that involves cytoskeletal remodeling and repositioning of the nucleus. Our approach shows that the actin and microtubules reorganize in the cell, bringing the actin to the leading edge of the cell. In parallel, the nucleus is transported behind the actin, likely by the cytoskeleton, into the indentation dimple formed in the gel. The nucleus volume below the gel surface correlates with indentation depth, when metastatic breast cancer cells indent gels deeply. However, the nucleus always remains above the gel in benign cells, even when small indentations are observed. Determining mechanical processes during metastatic cell invasion can reveal how cells disseminate in the body and can uncover targets for diagnosis and treatment.
2015Institute of Physics (IOP) et al.
03:06
2Rivas, Ángel et al.Understanding the role of correlations in quantum systems is both a fundamental challenge as well as of high practical relevance for the control of multi-particle quantum systems. Whereas a lot of research has been devoted to study the various types of correlations that can be present in the states of quantum systems, in this work we introduce a general and rigorous method to quantify the amount of correlations in the dynamics of quantum systems. Using a resource-theoretical approach, we introduce a suitable quantifier and characterize the properties of correlated dynamics. Furthermore, we benchmark our method by applying it to the paradigmatic case of two atoms weakly coupled to the electromagnetic radiation field, and illustrate its potential use to detect and assess spatial noise correlations in quantum computing architectures.
2015Institute of Physics (IOP) et al.
04:00
42Zhong, Tian et al.Conventional quantum key distribution (QKD) typically uses binary encoding based on photon polarization or time-bin degrees of freedom and achieves a key capacity of at most one bit per photon. Under photon-starved conditions the rate of detection events is much lower than the photon generation rate, because of losses in long distance propagation and the relatively long recovery times of available single-photon detectors. Multi-bit encoding in the photon arrival times can be beneficial in such photon-starved situations. Recent security proofs indicate high-dimensional encoding in the photon arrival times is robust and can be implemented to yield high secure throughput. In this work we demonstrate entanglement-based QKD with high-dimensional encoding whose security against collective Gaussian attacks is provided by a high-visibility Franson interferometer. We achieve unprecedented key capacity and throughput for an entanglement-based QKD system because of four principal factors: Franson interferometry that does not degrade with loss; error correction coding that can tolerate high error rates; optimized time–energy entanglement generation; and highly efficient WSi superconducting nanowire single-photon detectors. The secure key capacity yields as much as 8.7 bits per coincidence. When optimized for throughput we observe a secure key rate of 2.7 Mbit s−1 after 20 km fiber transmission with a key capacity of 6.9 bits per photon coincidence. Our results demonstrate a viable approach to high-rate QKD using practical photonic entanglement and single-photon detection technologies.
2015Institute of Physics (IOP) et al.
03:18
25Caspers, Christian et al.We demonstrate opto-spintronics using Fe-doped Indium Phosphide (InP). The method is based on optical orientation of InP conduction electron spins which are electrically detected in planar InP/oxide/Ni tunnel spin filters. We separate the optical excitation from electrical detection, avoiding thus additional interactions of photons with the ferromagnet. Interface engineering provides a surface iron accumulation and semiconducting Fe:In2O3 in the oxide tunnel barrier. The spin filtering effect switches to positive or negative asymmetry, depending on the Fe concentration in Fex:InP. With respect to the Fe-like electronic structure of these oxides, we can explain the opposite spin selection mechanisms as interface effects. In the temperature region where the InP mobility peaks, we find a maximum of spin-dependent asymmetry of in semi-insulating Fe:InP (001), and show the electrical spin detection in hyperpolarized InP also at room temperature. Such robust electronic spin detection in an InP nanodevice is planned to complement dynamic nuclear polarization experiments.
2015Institute of Physics (IOP) et al.
04:15
5Zhang, Si-Ping et al.Supply-demand processes take place on a large variety of real-world networked systems ranging from power grids and the internet to social networking and urban systems. In a modern infrastructure, supply-demand systems are constantly expanding, leading to constant increase in load requirement for resources and consequently, to problems such as low efficiency, resource scarcity, and partial system failures. Under certain conditions global catastrophe on the scale of the whole system can occur through the dynamical process of cascading failures. We investigate optimization and resilience of time-varying supply-demand systems by constructing network models of such systems, where resources are transported from the supplier sites to users through various links. Here by optimization we mean minimization of the maximum load on links, and system resilience can be characterized using the cascading failure size of users who fail to connect with suppliers. We consider two representative classes of supply schemes: load driven supply and fix fraction supply. Our findings are: (1) optimized systems are more robust since relatively smaller cascading failures occur when triggered by external perturbation to the links; (2) a large fraction of links can be free of load if resources are directed to transport through the shortest paths; (3) redundant links in the performance of the system can help to reroute the traffic but may undesirably transmit and enlarge the failure size of the system; (4) the patterns of cascading failures depend strongly upon the capacity of links; (5) the specific location of the trigger determines the specific route of cascading failure, but has little effect on the final cascading size; (6) system expansion typically reduces the efficiency; and (7) when the locations of the suppliers are optimized over a long expanding period, fewer suppliers are required. These results hold for heterogeneous networks in general, providing insights into designing optimal and resilient complex supply-demand systems that expand constantly in time.
2015Institute of Physics (IOP) et al.
02:17
6Máttar, Alejandro et al.Genuine randomness can be certified from Bell tests without any detailed assumptions on the working of the devices with which the test is implemented. An important class of experiments for implementing such tests is optical setups based on polarization measurements of entangled photons distributed from a spontaneous parametric down conversion source. Here we compute the maximal amount of randomness which can be certified in such setups under realistic conditions. We provide relevant yet unexpected numerical values for the physical parameters and achieve four times more randomness than previous methods.
2015Institute of Physics (IOP) et al.
06:38
4Arunachalam, Srinivasan et al.We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP '08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order (where is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of 'active' gates, since all components have to be actively error corrected.
2015Institute of Physics (IOP) et al.
02:56
20Cohen, Itsik et al.A proposal for a phase gate and a Mølmer–Sørensen gate in the dressed state basis is presented. In order to perform the multi-qubit interaction, a strong magnetic field gradient is required to couple the phonon-bus to the qubit states. The gate is performed using resonant microwave driving fields together with either a radio-frequency (RF) driving field, or additional detuned microwave driving fields. The gate is robust to ambient magnetic field fluctuations due to an applied resonant microwave driving field. Furthermore, the gate is robust to fluctuations in the microwave Rabi frequency and is decoupled from phonon dephasing due to a resonant RF or a detuned microwave driving field. This makes this new gate an attractive candidate for the implementation of high-fidelity microwave based multi-qubit gates. The proposal can also be realized in laser-based set-ups.
2015Institute of Physics (IOP) et al.