We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

EReMiD – Enhancing reuse of microbiome data

Formale Metadaten

Titel
EReMiD – Enhancing reuse of microbiome data
Untertitel
Enhancing reuse of microbiome data (EReMiD): AI-assisted data type categorization and ontology alignment across different disciplines
Serientitel
Anzahl der Teile
3
Autor
Lizenz
CC-Namensnennung 3.0 Deutschland:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The Sequence Read Archive (SRA) holds most of the microbiome sequencing data, yet over 75% are not FAIR-compliant, impeding advances in health and environmental sciences. This project aims to connect the Helmholtz HUBs Earth and Environment and Health through two complementary approaches: (1) AI-supported data type identification and correction to make orphaned data Findable and Reusable, and (2) interconnecting ontologies from Human (HMGU), and Terrestrial (UFZ) research fields by applying dictionaries to unify up to 8.2 million SRA records. By aligning these ontologies, we will enhance data Accessibility and Interoperability across research fields in three Centres. Additionally, we will conduct workshops to train the next generation of young scientists through the Centres' graduate schools. These workshops will foster a Research Object Crate bridging the Health and Earth and Environment HUBs, promoting robust metadata standards within the Helmholtz Metadata Collaboration.
Schlagwörter