We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

OpenSTEF: Opensource Short Term Energy Forecasting

Formale Metadaten

Titel
OpenSTEF: Opensource Short Term Energy Forecasting
Serientitel
Anzahl der Teile
798
Autor
Mitwirkende
Et al.
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The energy transition poses new challenges to all parties in the energy sector. For grid operators, the rise in renewable energy and electrification of energy consumption leads to the capacity of the grid to near its physical constraints. Forecasting the load on the grid in the next hours to days is essential for anticipating on local congestion and making the most of existing assets. OpenSTEF provides a complete software stack which forecasts the load on the electricity grid for the next hours to days. Given a timeseries of measured (net) load or generation, a fully automated machine learning pipeline is executed which delivers a probabilistic forecast of future load. During this presentation, the implementation of OpenSTEF to fully automatically forecast the load on the grid at the Dutch Distributed System Operator will be shown. Furthermore, the community built around OpenSTEF will be discussed. Take a look at the OpenSTEF website and Github.