We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Productionizing Jupyter Notebooks

Formale Metadaten

Titel
Productionizing Jupyter Notebooks
Serientitel
Anzahl der Teile
344
Autor
Mitwirkende
Lizenz
CC-Namensnennung 2.0 Belgien:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
Jupyter notebooks play a crucial role in the development stage for data analytics, machine learning, and other data-driven applications. However, moving them into a production environment often leads to a complex set of challenges. Challenges related to production readiness, version control, testing, reproducibility, and modularity are common. In this talk, we will delve into the specifics of these challenges and demonstrate how our tool, Versatile Data Kit (VDK), effectively addresses them. From deploying production-relevant code to ensuring linear execution for reproducibility, we will provide insights into practical solutions that could enhance efficiency in your data analytics and machine learning workflows. This session is aimed at those looking to understand the complexities of productionizing notebooks and explore potential methods to overcome these challenges. Benefits to the Ecosystem - solutions to several specific pain points of Productionizing Jupyter notebooks. For this talk, some prior knowledge of Jupyter Notebooks is necessary.