We're sorry but this page doesn't work properly without JavaScript enabled. Please enable it to continue.
Feedback

Moving from Offline to Online Machine Learning with River

Formale Metadaten

Titel
Moving from Offline to Online Machine Learning with River
Serientitel
Anzahl der Teile
64
Autor
Mitwirkende
Lizenz
CC-Namensnennung 3.0 Unported:
Sie dürfen das Werk bzw. den Inhalt zu jedem legalen Zweck nutzen, verändern und in unveränderter oder veränderter Form vervielfältigen, verbreiten und öffentlich zugänglich machen, sofern Sie den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen.
Identifikatoren
Herausgeber
Erscheinungsjahr
Sprache

Inhaltliche Metadaten

Fachgebiet
Genre
Abstract
The foundations of machine learning were built on offline batch processing techniques for model training and inference. As organisations become more dependent on real-time data, the technological trend for machine learning in production is moving towards adding an online stream processing approach. This has benefits such as lower computational requirements due to being able to incrementally learn from a stream of data points, which enables the continual upgrading of models by adapting to real-time changes in data. This has wide applications in industries such as cyber security, banking, healthcare, IIoT and any industry that involves processing large volumes of high throughput data and adapting predictive capability with real-time data feeds. This capability was once only in the realm of Java developers but now it's available to Python developers. You’ll leave this talk with an understanding of the differences between offline and online machine learning, how to complement one with the other and enough streaming concepts and best practices needed get started on your online ML journey with River, an open source Python ML library.